Saturday Night Science: Sunburst and Luminary

“Sunburst and Luminary: An Apollo Memoir” by Don EylesIn 1966, the author graduated from Boston University with a bachelor’s degree in mathematics. He had no immediate job prospects or career plans. He thought he might be interested in computer programming due to a love of solving puzzles, but he had never programmed a computer. When asked, in one of numerous job interviews, how he would go about writing a program to alphabetise a list of names, he admitted he had no idea. One day, walking home from yet another interview, he passed an unimpressive brick building with a sign identifying it as the “MIT Instrumentation Laboratory”. He’d heard a little about the place and, on a lark, walked in and asked if they were hiring. The receptionist handed him a long application form, which he filled out, and was then immediately sent to interview with a personnel officer. Eyles was amazed when the personnel man seemed bent on persuading him to come to work at the Lab. After reference checking, he was offered a choice of two jobs: one in the “analysis group” (whatever that was), and another on the team developing computer software for landing the Apollo Lunar Module (LM) on the Moon. That sounded interesting, and the job had another benefit attractive to a 21 year old just graduating from university: it came with deferment from the military draft, which was going into high gear as U.S. involvement in Vietnam deepened.

Near the start of the Apollo project, MIT’s Instrumentation Laboratory, led by the legendary “Doc” Charles Stark Draper, won a sole source contract to design and program the guidance system for the Apollo spacecraft, which came to be known as the “Apollo Primary Guidance, Navigation, and Control System” (PGNCS, pronounced “pings”). Draper and his laboratory had pioneered inertial guidance systems for aircraft, guided missiles, and submarines, and had in-depth expertise in all aspects of the challenging problem of enabling the Apollo spacecraft to navigate from the Earth to the Moon, land on the Moon, and return to the Earth without any assistance from ground-based assets. In a normal mission, it was expected that ground-based tracking and computers would assist those on board the spacecraft, but in the interest of reliability and redundancy it was required that completely autonomous navigation would permit accomplishing the mission.... [Read More]

12+
avataravataravataravataravataravataravataravataravataravataravataravatar

Saturday Night Science: Apollo 11 at 50 I: Apollo

Apollo 11 “everyone elsie” by Michael Collins, 1969-07-21, AS11-44-6643.On November 5, 1958, NASA, only four months old at the time, created the Space Task Group (STG) to manage its manned spaceflight programs. Although there had been earlier military studies of manned space concepts and many saw eventual manned orbital flights growing out of the rocket plane projects conducted by NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA) and the U.S. Air Force, at the time of the STG’s formation the U.S. had no formal manned space program. The initial group numbered 45 in all, including eight secretaries and “computers”—operators of electromechanical desk calculators, staffed largely with people from the NACA’s Langley Research Center and initially headquartered there. There were no firm plans for manned spaceflight, no budget approved to pay for it, no spacecraft, no boosters, no launch facilities, no mission control centre, no astronauts, no plans to select and train them, and no experience either with human flight above the Earth’s atmosphere or with more than a few seconds of weightlessness. And yet this team, the core of an effort which would grow to include around 400,000 people at NASA and its 20,000 industry and academic contractors, would, just ten years and nine months later, on July 20th, 1969, land two people on the surface of the Moon and then return them safely to the Earth.

Ten years is not a long time when it comes to accomplishing a complicated technological project. Development of the Boeing 787, a mid-sized commercial airliner which flew no further, faster, or higher than its predecessors, and was designed and built using computer-aided design and manufacturing technologies, took eight years from project launch to entry into service, and the F-35 fighter plane only entered service and then only in small numbers of one model a full twenty-three years after the start of its development.... [Read More]

11+
avataravataravataravataravataravataravataravataravataravataravatar