Book Review: Michoud Assembly Facility

“Michoud Assembly Facility” by Cindy Donze MantoIn March, 1763, King Louis XV of France made a land grant of 140 square kilometres to Gilbert Antoine St Maxent, the richest man in Louisiana Territory and commander of the militia. The grant required St Maxent to build a road across the swampy property, develop a plantation, and reserve all the trees in forested areas for the use of the French navy. When the Spanish took over the territory five years later, St Maxent changed his first names to “Gilberto Antonio” and retained title to the sprawling estate. In the decades that followed, the property changed hands and nations several times, eventually, now part of the United States, being purchased by another French immigrant, Antoine Michoud, who had left France after the fall of Napoleon, who his father had served as an official.

Michoud rapidly established himself as a prosperous businessman in bustling New Orleans, and after purchasing the large tract of land set about buying pieces which had been sold off by previous owners, re-assembling most of the original French land grant into one of the largest private land holdings in the United States. The property was mostly used as a sugar plantation, although territory and rights were ceded over the years for construction of a lighthouse, railroads, and telegraph and telephone lines. Much of the land remained undeveloped, and like other parts of southern Louisiana was a swamp or, as they now say, “wetlands”.

The land remained in the Michoud family until 1910, when it was sold in its entirety for US$410,000 in cash (around US$11 million today) to a developer who promptly defaulted, leading to another series of changes of ownership and dodgy plans for the land, which most people continued to refer to as the Michoud Tract. At the start of World War II, the U.S. government bought a large parcel, initially intended for construction of Liberty ships. Those plans quickly fell through, but eventually a huge plant was erected on the site which, starting in 1943, began to manufacture components for cargo aircraft, lifeboats, and components which were used in the Manhattan Project’s isotope separation plants in Oak Ridge, Tennessee.

At the end of the war, the plant was declared surplus but, a few years later, with the outbreak of the Korean War, it was re-purposed to manufacture engines for Army tanks. It continued in that role until 1954 when it was placed on standby and, in 1958, once again declared surplus. There things stood until mid-1961 when NASA, charged by the new Kennedy administration to “put a man on the Moon” was faced with the need to build rockets in sizes and quantities never before imagined, and to do so on a tight schedule, racing against the Soviet Union.

In June, 1961, Wernher von Braun, director of the NASA Marshall Space Flight Center in Huntsville, Alabama, responsible for designing and building those giant boosters, visited the then-idle Michoud Ordnance Plant and declared it ideal for NASA’s requirements. It had 43 acres (17 hectares) under one roof, the air conditioning required for precision work in the Louisiana climate, and was ready to occupy. Most critically, it was located adjacent to navigable waters which would allow the enormous rocket stages, far too big to be shipped by road, rail, or air, to be transported on barges to and from Huntsville for testing and Cape Canaveral in Florida to be launched.

In September 1961 NASA officially took over the facility, renaming it “Michoud Operations”, to be managed by NASA Marshall as the manufacturing site for the rockets they designed. Work quickly got underway to set up manufacturing of the first stage of the Saturn I and 1B rockets and prepare to build the much larger first stage of the Saturn V Moon rocket. Before long, new buildings dedicated to assembly and test of the new rockets, occupied both by NASA and its contractors, began to spring up around the original plant. In 1965, the installation was renamed the Michoud Assembly Facility, which name it bears to this day.

With the end of the Apollo program, it looked like Michoud might once again be headed for white elephant status, but the design selected for the Space Shuttle included a very large External Tank comparable in size to the first stage of the Saturn V which would be discarded on every flight. Michoud’s fabrication and assembly facilities, and its access to shipping by barge were ideal for this component of the Shuttle, and a total of 135 tanks built at Michoud were launched on Shuttle missions between 1981 and 2011.

The retirement of the Space Shuttle once again put the future of Michoud in doubt. It was originally tapped to build the core stage of the Constellation program’s Ares V booster, which was similar in size and construction to the Shuttle External Tank. The cancellation of Constellation in 2010 brought that to a halt, but then Congress and NASA rode to the rescue with the absurd-as-a-rocket but excellent-as-a-jobs-program Space Launch System (SLS), whose centre core stage also resembles the External Tank and Ares V. SLS first stage fabrication is presently underway at Michoud. Perhaps when the schedule-slipping, bugget-busting SLS is retired after a few flights (if, in fact, it ever flies at all), bringing to a close the era of giant taxpayer-funded throwaway rockets, the Michoud facility can be repurposed to more productive endeavours.

This book is largely a history of Michoud in photos and captions, with text introducing chapters on each phase of the facility’s history. All of the photos are in black and white, and are well-reproduced. In the Kindle edition many can be expanded to show more detail. There are a number of copy-editing and factual errors in the text and captions, but not too many to distract or mislead the reader. The unidentified “visitors” shown touring the Michoud facility in July 1967 (chapter 3, Kindle location 392) are actually the Apollo 7 crew, Walter Schirra, Donn Eisele, and Walter Cunningham, who would fly on a Michoud-built Saturn 1B in October 1968.

For a book of just 130 pages, most of which are black and white photographs, the hardcover is hideously expensive (US$29 at this writing). The Kindle edition is still pricey (US$13 list price), but may be read for free by Kindle Unlimited subscribers.

Manto, Cindy Donze. Michoud Assembly Facility. Charleston, SC: Arcadia Publishing, 2014. ISBN 978-1-5316-6969-0.

6+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

This Week’s Book Review – An Anxious Peace

I write a weekly book review for the Daily News of Galveston County. (It is not the biggest daily newspaper in Texas, but it is the oldest.) After my review appears on Sunday, I post the previous week’s review here on Sunday.

Book Review

‘An Anxious Peace’ looks at the Cold War

By MARK LARDAS

June 8, 2019

“An Anxious Peace: A Cold War Memoir,” by Hans Mark, Texas A&M University Press, 2019, 688 pages, $47

Hans Mark entered the United States as a refugee from Austria, immediately before the United States entered World War II. He went on to a career where he was a key player in technologies critical to the United States’ success during the rest of the century: atomic physics, aerospace engineering and space exploration.

In “An Anxious Peace: A Cold War Memoir,” by Hans Mark, he tells his story.

Mark’s family fled Austria after the German Anschluss. Mark’s father, a noted polymer chemist and professor, had been imprisoned by the Nazis, escaping with a former student’s assistance. The family spent time in Britain and Canada. In 1940, Mark’s family came to the United States after his father became a chemistry professor at Brooklyn Polytechnic Institute.

Hans grew up in New York attending Stuyvesant High School, a school focused on science and technology. Attending the University of California Berkeley, and MIT, he earned a Ph.D. in physics.

He spent his life showing his gratitude to the country that adopted him by protecting it from its enemies, especially the Soviet Union. Mark viewed communism as little different from the national socialism he had fled.

Mark’s next 50 years found him at the tip of the current hot technology battle of the Cold War. He designed helped nuclear weapons and nuclear energy. He led NASA-Ames Research Center, pioneering airborne astronomy, space exploration (including three Pioneer probes) and cutting-edge aeronautics. He served as an undersecretary and secretary of the Air Force, deputy administrator of NASA and chancellor of the University of Texas.

Along the way he influenced some of the technologies and tools critical to eventual U.S. victory in the Cold War: stealth technology, the B-1, orbital intelligence gathering, the space shuttle, the space station and parallel processing computers. He seemed to be at the right place at the right time.

The book is long, 650 7-by-10 inch pages. Yet it’s never dull. It’s a fascinating read, perhaps the most engaging memoir since “The Personal Memoirs of Ulysses S. Grant.” Readers will be rewarded with an intimate yet comprehensive account of the Cold War.

Mark Lardas, an engineer, freelance writer, amateur historian, and model-maker, lives in League City. His website is marklardas.com.

6+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

Saturday Night Science: The Case for Space

“The Case for Space” by Robert ZubrinFifty years ago, with the successful landing of Apollo 11 on the Moon, it appeared that the road to the expansion of human activity from its cradle on Earth into the immensely larger arena of the solar system was open. The infrastructure built for Project Apollo, including that in the original 1963 development plan for the Merritt Island area could support Saturn V launches every two weeks. Equipped with nuclear-powered upper stages (under active development by Project NERVA, and accommodated in plans for a Nuclear Assembly Building near the Vehicle Assembly Building), the launchers and support facilities were more than adequate to support construction of a large space station in Earth orbit, a permanently-occupied base on the Moon, exploration of near-Earth asteroids, and manned landings on Mars in the 1980s.

But this was not to be. Those envisioning this optimistic future fundamentally misunderstood the motivation for Project Apollo. It was not about, and never was about, opening the space frontier. Instead, it was a battle for prestige in the Cold War and, once won (indeed, well before the Moon landing), the budget necessary to support such an extravagant program (which threw away skyscraper-sized rockets with every launch), began to evaporate. NASA was ready to do the Buck Rogers stuff, but Washington wasn’t about to come up with the bucks to pay for it. In 1965 and 1966, the NASA budget peaked at over 4% of all federal government spending. By calendar year 1969, when Apollo 11 landed on the Moon, it had already fallen to 2.31% of the federal budget, and with relatively small year to year variations, has settled at around one half of one percent of the federal budget in recent years. Apart from a small band of space enthusiasts, there is no public clamour for increasing NASA’s budget (which is consistently over-estimated by the public as a much larger fraction of federal spending than it actually receives), and there is no prospect for a political consensus emerging to fund an increase.

Further, there is no evidence that dramatically increasing NASA’s budget would actually accomplish anything toward the goal of expanding the human presence in space. While NASA has accomplished great things in its robotic exploration of the solar system and building space-based astronomical observatories, its human space flight operations have been sclerotic, risk-averse, loath to embrace new technologies, and seemingly more oriented toward spending vast sums of money in the districts and states of powerful representatives and senators than actually flying missions.

Fortunately, NASA is no longer the only game in town (if it can even be considered to still be in the human spaceflight game, having been unable to launch its own astronauts into space without buying seats from Russia since the retirement of the Space Shuttle in 2011). In 2009, the commission headed by Norman Augustine recommended cancellation of NASA’s Constellation Program, which aimed at a crewed Moon landing in 2020, because they estimated that the heavy-lift booster it envisioned (although based largely on decades-old Space Shuttle technology) would take twelve years and US$36 billion to develop under NASA’s business-as-usual policies; Constellation was cancelled in 2010 (although its heavy-lift booster, renamed. de-scoped, re-scoped, schedule-slipped, and cost-overrun, stumbles along, zombie-like, in the guise of the Space Launch System [SLS] which has, to date, consumed around US$14 billion in development costs without producing a single flight-ready rocket, and will probably cost between one and two billion dollars for each flight, every year or two—this farce will probably continue as long as Richard Shelby, the Alabama Senator who seems to believe NASA stands for “North Alabama Spending Agency”, remains in the World’s Greatest Deliberative Body).

In February 2018, SpaceX launched its Falcon Heavy booster, which has a payload capacity to low Earth orbit comparable to the initial version of the SLS, and was developed with private funds in half the time at one thirtieth the cost (so far) of NASA’s Big Rocket to Nowhere. Further, unlike the SLS, which on each flight will consign Space Shuttle Main Engines and Solid Rocket Boosters (which were designed to be reusable and re-flown many times on the Space Shuttle) to a watery grave in the Atlantic, three of the four components of the Falcon Heavy (excluding only its upper stage, with a single engine) are reusable and can be re-flown as many as ten times. Falcon Heavy customers will pay around US$90 million for a launch on the reusable version of the rocket, less than a tenth of what NASA estimates for an SLS flight, even after writing off its enormous development costs.

On the heels of SpaceX, Jeff Bezos’s Blue Origin is developing its New Glenn orbital launcher, which will have comparable payload capacity and a fully reusable first stage. With competition on the horizon, SpaceX is developing the Super Heavy/Starship completely-reusable launcher with a payload of around 150 tonnes to low Earth orbit: more than any past or present rocket. A fully-reusable launcher with this capacity would also be capable of delivering cargo or passengers between any two points on Earth in less than an hour at a price to passengers no more than a first class ticket on a present-day subsonic airliner. The emergence of such a market could increase the demand for rocket flights from its current hundred or so per year to hundreds or thousands a day, like airline operations, with consequent price reductions due to economies of scale and moving all components of the transportation system down the technological learning curve.

Competition-driven decreases in launch cost, compounded by partially- or fully-reusable launchers, is already dramatically decreasing the cost of getting to space. A common metric of launch cost is the price to launch one kilogram into low Earth orbit. This remained stubbornly close to US$10,000/kg from the 1960s until the entry of SpaceX’s Falcon 9 into the market in 2010. Purely by the more efficient design and operations of a profit-driven private firm as opposed to a cost-plus government contractor, the first version of the Falcon 9 cut launch costs to around US$6,000/kg. By reusing the first stage of the Falcon 9 (which costs around three times as much as the expendable second stage), this was cut by another factor of two, to US$3,000/kg. The much larger fully reusable Super Heavy/Starship is projected to reduce launch cost (if its entire payload capacity can be used on every flight, which probably isn’t the way to bet) to the vicinity of US$250/kg, and if the craft can be flown frequently, say once a day, as somebody or other envisioned more than a quarter century ago, amortising fixed costs over a much larger number of launches could reduce cost per kilogram by another factor of ten, to something like US$25/kg.

Such cost reductions are an epochal change in the space business. Ever since the first Earth satellites, launch costs have dominated the industry and driven all other aspects of spacecraft design. If you’re paying US$10,000 per kilogram to put your satellite in orbit, it makes sense to spend large sums of money not only on reducing its mass, but also making it extremely reliable, since launching a replacement would be so hideously expensive (and with flight rates so low, could result in a delay of a year or more before a launch opportunity became available). But with a hundred-fold or more reduction in launch cost and flights to orbit operating weekly or daily, satellites need no longer be built like precision watches, but rather industrial gear like that installed in telecom facilities on the ground. The entire cost structure is slashed across the board, and space becomes an arena accessible for a wide variety of commercial and industrial activities where its unique characteristics, such as access to free, uninterrupted solar power, high vacuum, and weightlessness are an advantage.

But if humanity is truly to expand beyond the Earth, launching satellites that go around and around the Earth providing services to those on its surface is just the start. People must begin to homestead in space: first hundreds, then thousands, and eventually millions and more living, working, building, raising families, with no more connection to the Earth than immigrants to the New World in the 1800s had to the old country in Europe or Asia. Where will they be living, and what will they be doing?

In order to think about the human future in the solar system, the first thing you need to do is recalibrate how you think about the Earth and its neighbours orbiting the Sun. Many people think of space as something like Antarctica: barren, difficult and expensive to reach, unforgiving, and while useful for some forms of scientific research, no place you’d want to set up industry or build communities where humans would spend their entire lives. But space is nothing like that. Ninety-nine percent or more of the matter and energy resources of the solar system—the raw material for human prosperity—are found not on the Earth, but rather elsewhere in the solar system, and they are free for the taking by whoever gets there first and figures out how to exploit them. Energy costs are a major input to most economic activity on the Earth, and wars are regularly fought over access to scarce energy resources on the home planet. But in space, at the distance Earth orbits the Sun, 1.36 kilowatts of free solar power are available for every square metre of collector you set up. And, unlike on the Earth’s surface, that power is available 24 hours a day, every day of the year, and will continue to flow for billions of years into the future.

Settling space will require using the resources available in space, not just energy but material. Trying to make a space-based economy work by launching everything from Earth is futile and foredoomed. Regardless of how much you reduce launch costs (even with exotic technologies which may not even be possible given the properties of materials, such as space elevators or launch loops), the vast majority of the mass needed by a space-based civilisation will be dumb bulk materials, not high-tech products such as microchips. Water; hydrogen and oxygen for rocket fuel (which are easily made from water using electricity from solar power); aluminium, titanium, and steel for structural components; glass and silicon; rocks and minerals for agriculture and bulk mass for radiation shielding; these will account for the overwhelming majority of the mass of any settlement in space, whether in Earth orbit, on the Moon or Mars, asteroid mining camps, or habitats in orbit around the Sun. People and low-mass, high-value added material such as electronics, scientific instruments, and the like will launch from the Earth, but their destinations will be built in space from materials found there.

Why? As with most things in space, it comes down to delta-v (pronounced delta-vee), the change in velocity needed to get from one location to another. This, not distance, determines the cost of transportation in space. The Earth’s mass creates a deep gravity well which requires around 9.8 km/sec of delta-v to get from the surface to low Earth orbit. It is providing this boost which makes launching payloads from the Earth so expensive. If you want to get to geostationary Earth orbit, where most communication satellites operate, you need another 3.8 km/sec, for a total of 13.6 km/sec launching from the Earth. By comparison, delivering a payload from the surface of the Moon to geostationary Earth orbit requires only 4 km/sec, which can be provided by a simple single-stage rocket. Delivering material from lunar orbit (placed there, for example, by a solar powered electromagnetic mass driver on the lunar surface) to geostationary orbit needs just 2.4 km/sec. Given that just about all of the materials from which geostationary satellites are built are available on the Moon (if you exploit free solar power to extract and refine them), it’s clear a mature spacefaring economy will not be launching them from the Earth, and will create large numbers of jobs on the Moon, in lunar orbit, and in ferrying cargos among various destinations in Earth-Moon space.

The author surveys the resources available on the Moon, Mars, near-Earth and main belt asteroids, and, looking farther into the future, the outer solar system where, once humans have mastered controlled nuclear fusion, sufficient Helium-3 is available for the taking to power a solar system wide human civilisation of trillions of people for billions of years and, eventually, the interstellar ships they will use to expand out into the galaxy. Detailed plans are presented for near-term human missions to the Moon and Mars, both achievable within the decade of the 2020s, which will begin the process of surveying the resources available there and building the infrastructure for permanent settlement. These mission plans, unlike those of NASA, do not rely on paper rockets which have yet to fly, costly expendable boosters, or detours to “gateways” and other diversions which seem a prime example of (to paraphrase the author in chapter 14), “doing things in order to spend money as opposed to spending money in order to do things.”

This is an optimistic and hopeful view of the future, one in which the human adventure which began when our ancestors left Africa to explore and settle the far reaches of their home planet continues outward into its neighbourhood around the Sun and eventually to the stars. In contrast to the grim Malthusian vision of mountebanks selling nostrums like a “Green New Deal”, which would have humans huddled on an increasingly crowded planet, shivering in the cold and dark when the Sun and wind did not cooperate, docile and bowed to their enlightened betters who instruct them how to reduce their expectations and hopes for the future again and again as they wait for the asteroid impact to put an end to their misery, Zubrin sketches millions of diverse human (and eventually post-human, evolving in different directions) societies, exploring and filling niches on a grand scale that dwarfs that of the Earth, inventing, building, experimenting, stumbling, and then creating ever greater things just as humans have for millennia. This is a future not just worth dreaming of, but working to make a reality. We have the enormous privilege of living in the time when, with imagination, courage, the willingness to take risks and to discard the poisonous doctrines of those who preach “sustainability” but whose policies always end in resource wars and genocide, we can actually make it happen and see the first steps taken in our lifetimes.

Zubrin, Robert. The Case for Space. Amherst, NY: Prometheus Books, 2019. ISBN 978-1-63388-534-9.

Here is an interview with the author about the topics discussed in the book.

This is a one hour and forty-two minute interview (audio only) from “The Space Show” which explores the book in detail.  The audio gets much better after the pre-recorded introduction.

10+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

SpaceX Crew Dragon Destroyed in “Anomaly”

Ahhh…, those anomalies—those pesky anomalies.  The worst kind of anomaly is when your spacecraft, in the process of being qualified for human spaceflight to the International Space Station (ISS), goes kaboom on the ground while preparing for a static firing of its launch escape system rocket motors.  You know, kaboom, like this (sorry for the poor quality video—it’s all that’s presently available; there are some nasty words on the audio track.)

This happened yesterday, 2019-04-20, during preparation for a static firing (with the capsule strapped down to the ground) of the SuperDraco engines which provide the launch escape system of the Crew Dragon capsule, designed to transport crew to and from the ISS.  Eight SuperDraco engines are mounted on the Crew Dragon, in pairs, and are used only in the event of a failure which requires rapid separation of the capsule from a failing booster.  The launch escape system is intended to provide survivable abort from launcher failure anywhere from the launch pad to orbital insertion.  In a normal mission, the SuperDraco engines are not used, and may be re-flown on subsequent flights with minimal inspection and refurbishment.

The SuperDraco engines are made largely through additive manufacturing (“3D printing”), and have been subjected to an intensive test programme.  Here is a pad abort test from 2015, where the SuperDraco engines flew the profile of an abort from the launch pad (in this case, from a concrete pad instead of atop a booster).  (This is one of the most Kerbal space flight tests I’ve ever seen.)

The last milestone which SpaceX was expected to have to demonstrate before launching the first crew was an in-flight abort test, where a Crew Dragon capsule would separate from its Falcon 9 launcher near the point of maximum dynamic pressure (max q), showing its ability to get the crew off a failing booster under worst-case conditions and return them safely to the sea offshore the launch site.  The plan was to fly this mission in the next few months, re-using the Crew Dragon capsule successfully flown to and returned from the ISS on the Demo-1 mission in March, 2019.

It was this capsule which was being prepared for a test of the SuperDraco engines when everything went all splodey.  The close-up video does not show the immediate consequences of the “anomaly”, but scuttlebutt says the capsule is “in pieces”.  Observers at some distance from the test site saw a large orange cloud rising, which is the usual signature of release and combustion of hypergolic propellants as used in the SuperDraco engines.

Now, engineering is an art we learn from failure, and the reason we test is to learn the things we didn’t anticipate.  That said, having the launch escape system, whose only reason for being included on the crew capsule is to save the astronauts’ lives in case something else fails, spontaneously blow the crew capsule (and crew, had any been on board) to smithereens, is about as bad as things can get.  Serious thinkers about space flight safety have been asking for years whether the risks of carrying a high-energy launch escape system aloft on every flight might not actually be greater than flying without one; this incident might, in a rational world, spark discussion of this question, but the way to bet is that it won’t.

Unless it can be quickly determined that the failure was due to immersion of the capsule in salt water after its recent flight or something unrelated to performance of a new capsule, it seems likely this will result in delays to the scheduled Crew Dragon missions pushing the first crewed flight into 2020.  NASA will probably have to buy additional Soyuz seats, as the Boeing crew capsule has also suffered delays due to problems in its launch escape system.

Here is Scott Manley’s quick take on the failure and potential consequences for SpaceX and commercial crew.

7+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

Beresheet: Israel to the Moon

The Beresheet spacecraft, built by Israeli non-profit company SpaceIL, is scheduled to land on the Moon today.  Landing operations are expected to begin around 19:00 UTC (you can see a UTC clock in the right side of the title bar of this site).  Landing is planned for a site in the north of Mare Serenetatis, on the north-east part of the near side of the Moon, within a 15 km area known to have little rubble or rugged terrain.  Here is a preview of the landing process from SpaceIL.

If successful, SpaceIL will join NASA, the former Soviet Union, and China as the only space programmes to successfully soft land spacecraft on the Moon, and will be the first privately-funded venture to do so.  Beresheet was launched as a piggy-back secondary payload on the 2019-02-22 on the launch of the Nusantara Satu satellite for an Indonesian telecommunications company on a SpaceX Falcon 9 booster.  It got a ride to geostationary transfer orbit and then boosted its orbit in a sequence of four maneuvers until a final burn allowed it to be captured into lunar orbit on 2019-04-04, after which it progressively circularised its orbit around the Moon.

The entire budget for the Beresheet mission, including the SpaceX launch fee, is estimated at around US$ 95 million, most of it raised from private sources.  It is by far the least expensive lunar landing mission ever attempted.  Beresheet (בְּרֵאשִׁית) is the Hebrew word for “Genesis” and the title of the first book of the Bible.

Live coverage of the landing will begin at 19:45 UTC on SpaceIL’s YouTube live feed.  (Note that if you click the live feed before the broadcast starts, it will show you a starting time which is based upon YouTube’s guess of your time zone, which may not always be correct.  It’s best to rely on the UTC time and manually convert to your local time.)

Here is a preview of the mission by Scott Manley recorded just before the launch.

11+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

This Week’s Book Review – Houston: Space City, USA

I write a weekly book review for the Daily News of Galveston County. (It is not the biggest daily newspaper in Texas, but it is the oldest.) My review normally appears Wednesdays. When it appears, I post the review here on the following Sunday.

Book Review

‘Houston: Space City’ combines history, science and culture

By MARK LARDAS

Apr 2, 2019

“Houston: Space City, USA,” by Ray Viator, Texas A&M University Press, 2019, 224 pages, $37

Houston and America’s manned space program are inescapably intertwined. The Manned Spaceflight Center (today’s Johnson Space Center), which runs all of NASA manned missions, is in Houston. The first word broadcast by a human from another planet was “Houston.” The city gives major sports teams space-related names like Astros and Rockets.

“Houston: Space City, USA,” by Ray Viator, explores that connection in an extended photo-essay. It arrives just in time for the 50th anniversary of the first moon landing.

Viator, a long-time Houston media figure, combines history, science and culture. He starts out by looking at the history of NASA in Houston, focusing on the Apollo 11 moon landing. He goes well beyond that, however. Subsequent sections look at the impact hosting the Johnson Space Center has had on the city of Houston and its environs.

His exploration of space’s impact on Houston isn’t limited to rocket-related activities. He explores the impact of space on Houston’s research communities — institutions of higher education, medical research, and the whole spectrum of science research. He also looks at the impact the Johnson Space Center has had on Houston’s art community and its culture. He shows how Houston has embraced the concept of being Space City into its music, its architecture, and its visual arts.

He underscores his thesis with an eye-popping array of photographs. Many are his own. Some, especially when historical images are needed, come from a variety of other sources including NASA, the Houston Public Library archives or other local photographers.

The book mixes wonder with whimsy. Photographs showing the latest-greatest space technology, prominent figures in space history, reverential monuments and buildings significant to Houston’s space history are placed in proximity to space-themed Lego constructions, larger-than-life space-suited manikins selling stuff, or humorous space-themed murals. Viator also makes use of every opportunity to photograph the moon in proximity to some Houston activity.

Viator wanted to recapture the wonder of the 1960s space program and the sheer amount of fun space has provided Houston and Houston residents over the last 50 years. “Houston: Space City, USA” succeeds admirably in achieving that goal.

Mark Lardas, an engineer, freelance writer, amateur historian, and model-maker, lives in League City. His website is marklardas.com.

4+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar

Hayabusa2 Samples an Asteroid

Asteroid 162173 RyuguOn February 22, 2019, the Japan Aerospace Exploration Agency (JAXA) space probe Hayabusa2 (はやぶさ2) which has been exploring the small near-Earth asteroid 162173 Ryugu since its arrival on June 27, 2018, descended to the surface and collected a sample of the surface, which will be stored for eventual return to Earth. Here is a video of the descent, with material thrown up by the thrusters for collection.  The video is sped up by a factor of five.  Note the shadow of the spacecraft on the asteroid’s surface.

Ryugu is a very small asteroid, around 1 kilometre in diameter, discovered in 1999 by a search for near-Earth asteroids.  It is a rare type Cg asteroid, which combines characteristics of types C and G.  Such objects are rich in carbon compounds and very dark: its geometric albedo is between 0.044 and 0.050, reflecting around one third as much light as the Earth’s moon—Ryugu is comparable to a lump of coal.  Surface gravity on Ryugu is 0.00011 metres per second², 1/80,000th Earth’s gravity.

The video was taken by a camera called CAM-H, which was funded by a public subscription campaign.

In April 2019, Hayabusa2 will fire an explosively-formed projectile into the asteroid to sample sub-surface material.  As that is expected to be a very “dynamic” event, the spacecraft will hide on the other side of the asteroid when the projectile is fired: a free-flying camera is planned to image the impact.  The plan is to continue to investigate Ryugu until December 2019, when the spacecraft will depart to return the collected sample to Earth, landing its sample return capsule at the Woomera Test Range in Australia in December 2020.

Here is a Scott Manley video describing the mission.

7+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

Sick of all this political crap – Let’s change the channel!

Crew Dragon is off and running.  (This is far more important than any of the political crap occurring now.)  This is our current generation’s Apollo 11 moment, but it is more of a serial drama instead of a gigantic moment in time.  We are about to keep our brave space-faring citizens out of the Soyuz.  MAGA in the technical universe.

7+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

Chang’e 4 (嫦娥四号) Lands on the Far Side of the Moon

Chang'e 4 landing site on the far side of the MoonAt 02:26 UTC on 2019-01-03, the Chinese Chang’e 4 (嫦娥四号) soft lander and rover touched down in the Von Kármán crater on the far side of the Moon.  This is the first soft landing on the far side of the Moon, which is never visible from the Earth.  Here is a video including animation of the landing and actual images captured during the descent and of the surface after landing.

The lander carries a rover and a number of experiments.  It was originally built as a back-up to the Chang’e 3 lander and rover which landed on the near side of the Moon on December 14th, 2013, becoming the first spacecraft to soft land on the Moon since the Soviet Luna 24 in 1976.

The major challenge in exploring the far side of the Moon is communicating with Earth.  You can’t transmit radio signals through the Moon, so the only way to provide a direct communications link is to place a relay satellite in a “halo orbit” around the Earth-Moon Lagrangian point 2 (L2).  On 2018-05-20, the Queqiao (鹊桥) satellite was launched into such an orbit (the first such relay established at the Moon).  It was only after this relay was checked out that Chang’e 4 was launched on 2018-12-07.

The landing site at 177.6° E, 45.5° S on the floor of Von Kármán crater, is a relatively flat and uncratered area, relatively easy to get into compared to the rugged highlands of much of the Moon’s far side.  Here is a synthetic image of the landing site from Earth and Moon Viewer, seen from 500 km above the Moon, with an “x” indicating the reported touchdown point.

Chang'e landing site

Here is an image of the Moon’s far side returned by the lander.

Image of the Moon's far side from Chang'e 4

Colour in this image should be taken cum grano salis.  The Moon is a pretty uniform dark grey colour, although the shade may appear different depending upon the Sun angle.  This picture was taken right after landing, and the camera’s white balance may not have yet been calibrated.

In addition to cameras on the lander and rover (which has not yet been deployed), there are instruments to study the solar wind and its interaction with the lunar surface, the composition of the surface, and a ground penetrating radar to explore the sub-surface.  The lander carries a sealed “biosphere” with seeds of potatoes, Arabidopsis, and silkworm eggs, with a camera to monitor growth.  One hopes that the silkworm experiment will end better than the introduction of the gypsy moth into North America in 1868.

You may hear reports in the legacy media that Chang’e 4 landed “near the Moon’s south pole”—this is nonsense. Von Kármán crater is at latitude 45.5° S, half way between the equator and south pole; it is no closer to the lunar south pole than Portland, Oregon is to Earth’s north pole.  The confusion is due to the landing site being within the South Pole-Aitken basin, an enormous (2500 km diameter) impact crater on the lunar far side.  Because the basin is so huge, it extends from the south pole to half way to the equator.

14+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

Saturday Night Science: Ultima Thule Encounter

New Horizon and 2014 MU69 (artists's conception)(Saturday Night Science usually appears on the first Saturday of the month.  I have moved up the January 2019 edition one week to discuss the New Horizons spacecraft fly-by of Kuiper belt object 2014 MU69, “Ultima Thule”, on New Year’s Day, January 1st, 2019.)

In January 2006 the New Horizons spacecraft was launched to explore Pluto and its moons and, if all went well, proceed onward to another object in the Kuiper Belt of the outer solar system, Pluto being one of the largest, closest, and best known members.  New Horizons was the first spacecraft launched from Earth directly on a solar system escape (interstellar) trajectory (the Pioneer and Voyager probes had earlier escaped the solar system, but only with the help of gravity assists from Jupiter and Saturn).  It was launched from Earth with such velocity (16.26 km/sec) that it passed the Moon’s orbit in just nine hours, a distance that took the Apollo missions three days to traverse.

In February 2007, New Horizons flew by Jupiter at a distance of 2.3 million km, using the planet’s gravity to increase its speed to 23 km/sec, thereby knocking three years off its transit time to Pluto.  While passing through the Jupiter system, it used its instruments to photograph the planet and its moons.  There were no further encounters with solar system objects until arrival at Pluto in 2015, and the spacecraft spent most of its time in hibernation, with most systems powered down to extend their lives, reduce staffing requirements for the support team on Earth, and free up the NASA Deep Space Network to support other missions.

As New Horizons approached Pluto, selection of possible targets for a post-Pluto extended mission became a priority.  In orbital mechanics, what matters isn’t so much distance and speed but rather “delta-v”: the change in velocity needed to divert the trajectory of a spacecraft from where it is currently headed to where you want it to go.  For chemical rockets, like the thrusters on New Horizons, this depends entirely on how much propellant is on board, and this resource would be scarce after expending what was required for the Pluto mission.  New Horizons was launched with propellant to provide 290 metres/sec delta-v, but most of this would be used in course corrections en route to Pluto and maneuvers during the Pluto encounter (the scientific instruments are fixed to the spacecraft structure, which must be turned by firing the thrusters to aim them at their targets.)  Starting in 2011, an observing campaign using large Earth-based telescopes began searching for objects in the Kuiper belt which might be suitable targets for New Horizons after Pluto.  These objects are extraordinarily difficult to observe: they are more than four billion kilometres from Earth, small, and mostly very dark, and thus visible only with the largest telescopes with long exposure times under perfectly clear and dark skies.  To make things worse, as it happens, during this time Pluto’s orbit took it past some of the densest star fields of the Milky Way, near the centre of the galaxy in the constellation of Sagittarius, so the search was cluttered with myriad background stars.  A total of 143 new Kuiper belt objects were discovered by this search, but none was reachable with the 33 kg of hydrazine monopropellant expected to remain after the Pluto encounter.

It was time to bring a bigger hammer to the job, and in June 2014, time on the Hubble Space Telescope was assigned to the search.  By October of that year three potential targets, all too faint to spot with ground-based telescopes, had been identified and called, imaginatively, potential targets PT1, PT2, and PT3.  The course change to get to PT1 would use only around 35% of New Horizons‘ remaining fuel, while the others were more difficult to reach (and thus less probable to result in a successful mission).  PT1 was chosen, and subsequently re-named “2014 MU69”, along with its minor planet number of 486958.  Subsequently, a “public outreach” effort by NASA chose the nickname “Ultima Thule”, which means a distant place beyond the known world.  A recommendation for an official name will not be made until New Horizons reveals its properties.

The fly-by of Pluto in July 2015 was a tremendous success, fulfilling all of its scientific objectives, and in October 2015 New Horizons fired its thrusters for sixteen minutes to change its velocity by 10 metres per second (equivalent to accelerating your car to 22 miles per hour), setting it on course for Ultima Thule.  Three subsequent burns would further refine the trajectory and adjust the circumstances of the fly-by.  This was the first time in history that a spacecraft was targeted to explore an object which had not been discovered when launched from Earth.  After transmitting all the data collected in the Pluto encounter to Earth, which took until October 2016, New Horizons went back into hibernation.

In June 2018, the spacecraft was awakened and in August 2018 it observed its target with its own instruments for the first time.  Measurement of its position against the background star field allowed precise determination of the inbound trajectory, which was used in final course correction maneuvers.  At the same time, the spacecraft joined Earth-based telescopes and the Hubble in a search for possible moons, rings, or dust around Ultima Thule which might damage the spacecraft on a close approach.  Had such hazards been found, the fly-by would have been re-targeted to be at a safer distance, but none was found and the original plan for a fly-by at 3500 km was selected.

Although New Horizons is bearing down on its target at a velocity of 14.4 km/sec, it will remain just a faint dot until hours before closest approach at 05:33 UTC on New Year’s Day, January 1st, 2019.  Other than its position, brightness, and colour (reddish), little or nothing is known about the properties of Ultima Thule.  We don’t know its size, shape, composition, temperature, rate of rotation, albedo (reflectivity), whether it is one object or two or more in close orbit or in contact, or anything about its history.  What is almost certain, however, is that it is nothing like anything in the solar system we’ve explored close-up so far.

Its orbit, unlike that of Pluto, is that of a conventional, well-behaved member of the Sun’s extended family.  The orbit, which takes Ultima Thule around the Sun every 296 years, is almost perfectly circular (eccentricity 0.045) and close to the ecliptic (2.45°).  (By contrast, Pluto’s orbit has an eccentricity of 0.25 and an inclination to the ecliptic of 17°.)  This makes it probable that Ultima Thule has avoided the cosmic billiards game which has perturbed the orbits of so many distant objects in the solar system, making it a “cold classical Kuiper belt object” (the “cold” refers not to temperature but its analogue in dispersion of velocity).  What this means is that it is highly probable that this body, unlike the planets and moons of the inner solar system, which have been extensively reprocessed from their original constituents, has been undisturbed since the formation of the solar system 4.5 billion years ago and is a time capsule preserving the raw materials from which the inner planets were assembled.

In 2017, predictions of Ultima Thule’s orbit indicated that it would pass in front of, or occult, a distant star, with the shadow passing through southern Argentina.  Since the distance to the object and its speed in orbit are known reasonably well, simply by measuring the duration of the star’s occultation, it is possible to compute the length of the chord of the object’s path in front of the star.  Multiple observing stations and precise timings allow estimating an object’s size and shape.  A network of twenty-four small telescopes was set up along the expected path (there is substantial uncertainty in the orbit, so not all were expected to see the occultation, but five succeeded in observing it).  Combining their results  yielded this estimation of Ultima Thule’s size and shape.

2014 MU69 Occultation resultsThe best fit was to a close binary or “contact binary”: two lobes, probably originally separate objects, in contact with one another.  What does it actually look like?  We’ll have to wait and see.  The occultation observations found no evidence for rings, moons, or a dust halo, increasing confidence in the planned close fly-by.

Another mystery which will have to await close-up observation is the absence of a pronounced light curve.  An irregularly-shaped object like Ultima Thule would be expected to vary dramatically in brightness as it rotates, but extended observations by Hubble failed to find any variation at all.  The best guess is that we’re observing it close to the pole of rotation, but again it’s anybody’s guess until we get there and take a look.

Are we there yet?  No, but it won’t be long now.  As I noted, the closest fly-by will be at 05:33 UTC on 2019-01-01.  Most of the scientific data will be collected in the day before and after the moment of closest approach.  Coverage of this event will not be like what you’ve become accustomed to from other space missions.  New Horizons will be 6.6 billion kilometres from the Earth at the time of the fly-by, more than 43 times the distance of the Earth from the Sun.  It takes light (and radio waves) six hours to travel that distance, so anything transmitted to Earth will take that long to arrive.  Further, since the high-gain antenna used to send data back to Earth is fixed to the same spacecraft structure as the scientific instruments, while they are collecting data during the fly-by, the antenna won’t be pointed in the correct direction to send it back to the distant home planet.

After the scientific observations are complete, the antenna will be pointed at the Earth to send “quick look” data, spacecraft health information, and the first images.  These are expected later on the first of January and over the next few days.  To those accustomed to broadband Internet, these data arrive excruciatingly slowly.

Deep Space Network: New Horizons data downlink

Even with a 70 metre Deep Space Network antenna, the downlink rate is 501 bits per second.  If you have a 50 megabit per second broadband Internet connection, this is one hundred thousand times slower: comparable to the dial-up computer terminal (300 bits per second) I used in 1968.  It takes around an hour to return a single image, even in the compressed formats used for quick-look data.  Downloading all of the science data collected during the fly-by will begin on the 9th of January, when New Horizons returns to spin-stabilised mode (which requires no maneuvering fuel) with its antenna pointed at Earth, and is expected to take twenty months.  When the data download is complete, the spacecraft will be placed back into hibernation mode.  If another Kuiper belt target is identified which can be reached with the remaining maneuvering fuel before its nuclear power source decays or its distance to Earth becomes too great to return fly-by data (expected in the 2030s), it may be re-targeted for another fly-by.

Coverage of the New Horizons fly-by of Ultima Thule will be broadcast on the Johns Hopkins University Applied Physics Laboratory (who built the spacecraft and manages the mission) YouTube channel.  Here is a schedule of mission-related programming.  This is the mission Web site, with links to resources for the spacecraft and its destination.  This article by Emily Lakdawalla of the Planetary Society gives more detail about the encounter, when data and images will be returned, and what we can expect to see when.

I will post news and data as they arrive in the comments to this post.  If you wish to be notified when new comments are posted but don’t have a comment to add at the moment, simply post a comment consisting of the single word “follow” and you’ll receive notifications without your comment appearing.

Here is a Science Chat from September 2018 with New Horizons principal investigator Alan Stern looking ahead to the encounter with Ultima Thule.

This is a panel discussion at the American Geophysical Union meeting in December 2017 describing the preparations for the encounter with Ultima Thule and what may be learned from the fly-by.

12+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

SpaceX CRS-16 Landing Failure

Yesterday, 2018-12-05, SpaceX successfully launched a Dragon spacecraft from Cape Canaveral to deliver more than 2500 kg of cargo to the International Space Station (ISS).  The Dragon spacecraft (apart from its disposable “trunk” section) was previously flown on the CRS-10 mission to the ISS in February 2017.  The Falcon 9 booster was new, on its first flight.  Here is a video of the launch, starting at 15 seconds before liftoff through deployment of the Dragon’s solar panels.

The primary mission was delivery of the Dragon to an orbit to rendezvous with the ISS, and was entirely successful.  SpaceX intended to recover the first stage booster for subsequent re-use (it is a “Block 5” model, designed to fly as many as ten times with minimal refurbishment between launches) back at the landing zone at Cape Canaveral.  This involves, after separating the second stage, flipping the first stage around, firing three engines in a boost-back burn to cancel its downrange velocity and direct it back toward the Cape, a three engine re-entry burn to reduce its velocity before it enters the dense atmosphere, and a single engine landing burn to touch down.

Everything went well with the landing through the re-entry burn.  As the first stage encountered the atmosphere, it began to roll out of control around its long axis.  The “grid fins” which extend from the first stage to provide aerodynamic control, were not observed to move as they should to counter the roll moment.  As the roll began to go all Kerbal, the feed from the first stage was cut in the SpaceX launch coverage in the video above.

In the post-launch press conference, Hans Koenigsmann, Vice President of Build and Flight Reliability at SpaceX, showed a video which picks up at the moment the feed was cut and continues through the first stage’s landing off the coast of Cape Canaveral.  He describes how the safety systems deliberately target a water landing and only shift the landing point to the landing pad (or drone ship) once confident everything is working as intended.

Here is a video taken from the shore which shows the final phase of the first stage’s braking and water landing.  Note how the spin was arrested at the last instant before touchdown.

In this video, Everyday Astronaut Tim Dodd explains the first stage recovery sequence and what appears to have gone wrong, based upon tweets from Elon Musk after the landing.

After splashing down, the first stage completed all of its safing procedures, allowing a recovery ship to approach it and tow it back to port.  SpaceX has said it will be inspected and, if judged undamaged by the water landing, may be re-flown on a SpaceX in-house mission (but not for a paying customer).

The most likely cause of the accident is failure of the hydraulic pump that powers the grid fins.  In the present design, there is only one pump, so there is no redundancy.  This may be changed to include a second pump, so a single pump failure can be tolerated.

15+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

Saturday Night Science: Apollo 8 Fifty Years Ago

Apollo 8 EarthriseAs the tumultuous year 1968 drew to a close, NASA faced a serious problem with the Apollo project. The Apollo missions had been carefully planned to test the Saturn V booster rocket and spacecraft (Command/Service Module [CSM] and Lunar Module [LM]) in a series of increasingly ambitious missions, first in low Earth orbit (where an immediate return to Earth was possible in case of problems), then in an elliptical Earth orbit which would exercise the on-board guidance and navigation systems, followed by lunar orbit, and finally proceeding to the first manned lunar landing. The Saturn V had been tested in two unmanned “A” missions: Apollo 4 in November 1967 and Apollo 6 in April 1968. Apollo 5 was a “B” mission, launched on a smaller Saturn 1B booster in January 1968, to test an unmanned early model of the Lunar Module in low Earth orbit, primarily to verify the operation of its engines and separation of the descent and ascent stages. Apollo 7, launched in October 1968 on a Saturn 1B, was the first manned flight of the Command and Service modules and tested them in low Earth orbit for almost 11 days in a “C” mission.

Apollo 8 was planned to be the “D” mission, in which the Saturn V, in its first manned flight, would launch the Command/Service and Lunar modules into low Earth orbit, where the crew, commanded by Gemini veteran James McDivitt, would simulate the maneuvers of a lunar landing mission closer to home. McDivitt’s crew was trained and ready to go in December 1968. Unfortunately, the lunar module wasn’t. The lunar module scheduled for Apollo 8, LM-3, had been delivered to the Kennedy Space Center in June of 1968, but was, to put things mildly, a mess. Testing at the Cape discovered more than a hundred serious defects, and by August it was clear that there was no way LM-3 would be ready for a flight in 1968. In fact, it would probably slip to February or March 1969. This, in turn, would push the planned “E” mission, for which the crew of commander Frank Borman, command module pilot James Lovell, and lunar module pilot William Anders were training, aimed at testing the Command/Service and Lunar modules in an elliptical Earth orbit venturing as far as 7400 km from the planet and originally planned for March 1969, three months later, to June, delaying all subsequent planned missions and placing the goal of landing before the end of 1969 at risk.

But NASA were not just racing the clock—they were also racing the Soviet Union. Unlike Apollo, the Soviet space program was highly secretive and NASA had to go on whatever scraps of information they could glean from Soviet publications, the intelligence community, and independent tracking of Soviet launches and spacecraft in flight. There were, in fact, two Soviet manned lunar programmes running in parallel. The first, internally called the Soyuz 7K-L1 but dubbed “Zond” for public consumption, used a modified version of the Soyuz spacecraft launched on a Proton booster and was intended to carry two cosmonauts on a fly-by mission around the Moon. The craft would fly out to the Moon, use its gravity to swing around the far side, and return to Earth. The Zond lacked the propulsion capability to enter lunar orbit. Still, success would allow the Soviets to claim the milestone of first manned mission to the Moon. In September 1968 Zond 5 successfully followed this mission profile and safely returned a crew cabin containing tortoises, mealworms, flies, and plants to Earth after their loop around the Moon. A U.S. Navy destroyer observed recovery of the re-entry capsule in the Indian Ocean. Clearly, this was preparation for a manned mission which might occur on any lunar launch window.

(The Soviet manned lunar landing project was actually far behind Apollo, and would not launch its N1 booster on that first, disastrous, test flight until February 1969. But NASA did not know this in 1968.) Every slip in the Apollo program increased the probability of its being scooped so close to the finish line by a successful Zond flyby mission.

These were the circumstances in August 1968 when what amounted to a cabal of senior NASA managers including George Low, Chris Kraft, Bob Gilruth, and later joined by Wernher von Braun and chief astronaut Deke Slayton, began working on an alternative. They plotted in secret, beneath the radar and unbeknownst to NASA administrator Jim Webb and his deputy for manned space flight, George Mueller, who were both out of the country, attending an international conference in Vienna. What they were proposing was breathtaking in its ambition and risk. They envisioned taking Frank Borman’s crew, originally scheduled for Apollo 9, and putting them into an accelerated training program to launch on the Saturn V and Apollo spacecraft currently scheduled for Apollo 8. They would launch without a Lunar Module, and hence be unable to land on the Moon or test that spacecraft. The original idea was to perform a Zond-like flyby, but this was quickly revised to include going into orbit around the Moon, just as a landing mission would do. This would allow retiring the risk of many aspects of the full landing mission much earlier in the program than originally scheduled, and would also allow collection of precision data on the lunar gravitational field and high resolution photography of candidate landing sites to aid in planning subsequent missions. The lunar orbital mission would accomplish all the goals of the originally planned “E” mission and more, allowing that mission to be cancelled and therefore not requiring an additional booster and spacecraft.

But could it be done? There were a multitude of requirements, all daunting. Borman’s crew, training toward a launch in early 1969 on an Earth orbit mission, would have to complete training for the first lunar mission in just sixteen weeks. The Saturn V booster, which suffered multiple near-catastrophic engine failures in its second flight on Apollo 6, would have to be cleared for its first manned flight. Software for the on-board guidance computer and for Mission Control would have to be written, tested, debugged, and certified for a lunar mission many months earlier than previously scheduled. A flight plan for the lunar orbital mission would have to be written from scratch and then tested and trained in simulations with Mission Control and the astronauts in the loop. The decision to fly Borman’s crew instead of McDivitt’s was to avoid wasting the extensive training the latter crew had undergone in LM systems and operations by assigning them to a mission without an LM. McDivitt concurred with this choice: while it might be nice to be among the first humans to see the far side of the Moon with his own eyes, for a test pilot the highest responsibility and honour is to command the first flight of a new vehicle (the LM), and he would rather skip the Moon mission and fly later than lose that opportunity. If the plan were approved, Apollo 8 would become the lunar orbit mission and the Earth orbit test of the LM would be re-designated Apollo 9 and fly whenever the LM was ready.

While a successful lunar orbital mission on Apollo 8 would demonstrate many aspects of a full lunar landing mission, it would also involve formidable risks. The Saturn V, making only its third flight, was coming off a very bad outing in Apollo 6 whose failures might have injured the crew, damaged the spacecraft hardware, and precluded a successful mission to the Moon. While fixes for each of these problems had been implemented, they had never been tested in flight, and there was always the possibility of new problems not previously seen.

The Apollo Command and Service modules, which would take them to the Moon, had not yet flown a manned mission and would not until Apollo 7, scheduled for October 1968. Even if Apollo 7 were a complete success (which was considered a prerequisite for proceeding), Apollo 8 would be only the second manned flight of the Apollo spacecraft, and the crew would have to rely upon the functioning of its power generation, propulsion, and life support systems for a mission lasting six days. Unlike an Earth orbit mission, if something goes wrong en route to or returning from the Moon, you can’t just come home immediately. The Service Propulsion System on the Service Module would have to work perfectly when leaving lunar orbit or the crew would be marooned forever or crash on the Moon. It would only have been tested previously in one manned mission and there was no backup (although the single engine did incorporate substantial redundancy in its design).

The spacecraft guidance, navigation, and control system and its Apollo Guidance Computer hardware and software, upon which the crew would have to rely to navigate to and from the Moon, including the critical engine burns to enter and leave lunar orbit while behind the Moon and out of touch with Mission Control, had never been tested beyond Earth orbit.

The mission would go to the Moon without a Lunar Module. If a problem developed en route to the Moon which disabled the Service Module (as would happen to Apollo 13 in April 1970), there would be no LM to serve as a lifeboat and the crew would be doomed.

When the high-ranking conspirators presented their audacious plan to their bosses, the reaction was immediate. Manned spaceflight chief Mueller immediately said, “Can’t do that! That’s craziness!” His boss, administrator James Webb, said “You try to change the entire direction of the program while I’m out of the country?” Mutiny is a strong word, but this seemed to verge upon it. Still, Webb and Mueller agreed to meet with the lunar cabal in Houston on August 22. After a contentious meeting, Webb agreed to proceed with the plan and to present it to President Johnson, who was almost certain to approve it, having great confidence in Webb’s management of NASA. The mission was on.

It was only then that Borman and his crewmembers Lovell and Anders learned of their reassignment. While Anders was disappointed at the prospect of being the Lunar Module Pilot on a mission with no Lunar Module, the prospect of being on the first flight to the Moon and entrusted with observation and photography of lunar landing sites more than made up for it. They plunged into an accelerated training program to get ready for the mission.

NASA approached the mission with its usual “can-do” approach and public confidence, but everybody involved was acutely aware of the risks that were being taken. Susan Borman, Frank’s wife, privately asked Chris Kraft, director of Flight Operations and part of the group who advocated sending Apollo 8 to the Moon, with a reputation as a plain-talking straight shooter, “I really want to know what you think their chances are of coming home.” Kraft responded, “You really mean that, don’t you?” “Yes,” she replied, “and you know I do.” Kraft answered, “Okay. How’s fifty-fifty?” Those within the circle, including the crew, knew what they were biting off.

The launch was scheduled for December 21, 1968. Everybody would be working through Christmas, including the twelve ships and thousands of sailors in the recovery fleet, but lunar launch windows are set by the constraints of celestial mechanics, not human holidays. In November, the Soviets had flown Zond 6, and it had demonstrated the “double dip” re-entry trajectory required for human lunar missions. There were two system failures which killed the animal test subjects on board, but these were covered up and the mission heralded as a great success. From what NASA knew, it was entirely possible the next launch would be with cosmonauts bound for the Moon.

Space launches were exceptional public events in the 1960s, and the first flight of men to the Moon, just about a hundred years after Jules Verne envisioned three men setting out for the Moon from central Florida in a “cylindro-conical projectile” in De la terre à la lune (From the Earth to the Moon), similarly engaging the world, the launch of Apollo 8 attracted around a quarter of a million people to watch the spectacle in person and hundreds of millions watching on television both in North America and around the globe, thanks to the newfangled technology of communication satellites.  Let’s tune in to CBS television and relive this singular event with Walter Cronkite.  (For one of those incomprehensible reasons in the Internet of Trash, this video, for which YouTube will happily generate an embed code, fails to embed in WordPress.  You’ll have to click the link below to view it.)

CBS coverage of the Apollo 8 launch

Now we step inside Mission Control and listen in on the Flight Director’s audio loop during the launch, illustrated with imagery and simulations.

The Saturn V performed almost flawlessly. During the second stage burn mild pogo oscillations began but, rather than progressing to the point where they almost tore the rocket apart as had happened on the previous Saturn V launch, von Braun’s team’s fixes kicked in and seconds later Borman reported, “Pogo’s damping out.” A few minutes later Apollo 8 was in Earth orbit.

Jim Lovell had sixteen days of spaceflight experience across two Gemini missions, one of them Gemini 7 where he endured almost two weeks in orbit with Frank Borman. Bill Anders was a rookie, on his first space flight. Now weightless, all three were experiencing a spacecraft nothing like the cramped Mercury and Gemini capsules which you put on as much as boarded. The Apollo command module had an interior volume of six cubic metres (218 cubic feet, in the quaint way NASA reckons things) which may not seem like much for a crew of three, but in weightlessness, with every bit of space accessible and usable, felt quite roomy. There were five real windows, not the tiny portholes of Gemini, and plenty of space to move from one to another.

With all this roominess and mobility came potential hazards, some verging on slapstick, but, in space, serious nonetheless. NASA safety personnel had required the astronauts to wear life vests over their space suits during the launch just in case the Saturn V malfunctioned and they ended up in the ocean. While moving around the cabin to get to the navigation station after reaching orbit, Lovell, who like the others hadn’t yet removed his life vest, snagged its activation tab on a strut within the cabin and it instantly inflated. Lovell looked ridiculous and the situation comical, but it was no laughing matter. The life vests were inflated with carbon dioxide which, if released in the cabin, would pollute their breathing air and removal would use up part of a CO₂ scrubber cartridge, of which they had a limited supply on board. Lovell finally figured out what to do. After being helped out of the vest, he took it down to the urine dump station in the lower equipment bay and vented it into a reservoir which could be dumped out into space. One problem solved, but in space you never know what the next surprise might be.

The astronauts wouldn’t have much time to admire the Earth through those big windows. Over Australia, just short of three hours after launch, they would re-light the engine on the third stage of the Saturn V for the “trans-lunar injection” (TLI) burn of 318 seconds, which would accelerate the spacecraft to just slightly less than escape velocity, raising its apogee so it would be captured by the Moon’s gravity. After housekeeping (presumably including the rest of the crew taking off those pesky life jackets, since there weren’t any wet oceans where they were going) and reconfiguring the spacecraft and its computer for the maneuver, they got the call from Houston, “You are go for TLI.” They were bound for the Moon.

The third stage, which had failed to re-light on its last outing, worked as advertised this time, with a flawless burn. Its job was done; from here on the astronauts and spacecraft were on their own. The booster had placed them on a free-return trajectory. If they did nothing (apart from minor “trajectory correction maneuvers” easily accomplished by the spacecraft’s thrusters) they would fly out to the Moon, swing around its far side, and use its gravity to slingshot back to the Earth (as Lovell would do two years later when he commanded Apollo 13, although there the crew had to use the engine of the LM to get back onto a free-return trajectory after the accident).

Apollo 8 rapidly climbed out of the Earth’s gravity well, trading speed for altitude, and before long the astronauts beheld a spectacle no human eyes had glimpsed before: an entire hemisphere of Earth at once, floating in the inky black void. On board, there were other concerns: Frank Borman was puking his guts out and having difficulties with the other end of the tubing as well. Borman had logged more than six thousand flight hours in his career as a fighter and test pilot, most of it in high-performance jet aircraft, and fourteen days in space on Gemini 7 without any motion sickness. Many people feel queasy when they experience weightlessness the first time, but this was something entirely different and new in the American space program. And it was very worrisome. The astronauts discussed the problem on private tapes they could downlink to Mission Control without broadcasting to the public, and when NASA got around to playing the tapes, the chief flight surgeon, Dr. Charles Berry, became alarmed.

As he saw it, there were three possibilities: motion sickness, a virus of some kind, or radiation sickness. On its way to the Moon, Apollo 8 passed directly through the Van Allen radiation belts, spending two hours in this high radiation environment, the first humans to do so. The total radiation dose was estimated as roughly the same as one would receive from a chest X-ray, but the composition of the radiation was different and the exposure was over an extended time, so nobody could be sure it was safe. The fact that Lovell and Anders had experienced no symptoms argued against the radiation explanation. Berry concluded that a virus was the most probable cause and, based upon the mission rules said, “I’m recommending that we consider canceling the mission.” The risk of proceeding with the commander unable to keep food down and possibly carrying a virus which the other astronauts might contract was too great in his opinion. This recommendation was passed up to the crew. Borman, usually calm and collected even by astronaut standards, exclaimed, “What? That is pure, unadulterated horseshit.” The mission would proceed, and within a day his stomach had settled.

This was the first case of space adaptation syndrome to afflict an American astronaut. (Apparently some Soviet cosmonauts had been affected, but this was covered up to preserve their image as invincible exemplars of the New Soviet Man.) It is now known to affect around a third of people experiencing weightlessness in environments large enough to move around, and spontaneously clears up in two to four (miserable) days.

The two most dramatic and critical events in Apollo 8’s voyage would occur on the far side of the Moon, with 3500 km of rock between the spacecraft and the Earth totally cutting off all communications. The crew would be on their own, aided by the computer and guidance system and calculations performed on the Earth and sent up before passing behind the Moon. The first would be lunar orbit insertion (LOI), scheduled for 69 hours and 8 minutes after launch. The big Service Propulsion System (SPS) engine (it was so big—twice as large as required for Apollo missions as flown—because it was designed to be able to launch the entire Apollo spacecraft from the Moon if a “direct ascent” mission mode had been selected) would burn for exactly four minutes and seven seconds to bend the spacecraft’s trajectory around the Moon into a closed orbit around that world.

If the SPS failed to fire for the LOI burn, it would be a huge disappointment but survivable. Apollo 8 would simply continue on its free-return trajectory, swing around the Moon, and fall back to Earth where it would perform a normal re-entry and splashdown. But if the engine fired and cut off too soon, the spacecraft would be placed into an orbit which would not return them to Earth, marooning the crew in space to die when their supplies ran out. If it burned just a little too long, the spacecraft’s trajectory would intersect the surface of the Moon—lithobraking is no way to land on the Moon.

When the SPS engine shut down precisely on time and the computer confirmed the velocity change of the burn and orbital parameters, the three astronauts were elated, but they were the only people in the solar system aware of the success. Apollo 8 was still behind the Moon, cut off from communications. The first clue Mission Control would have of the success or failure of the burn would be when Apollo 8’s telemetry signal was reacquired as it swung around the limb of the Moon. If too early, it meant the burn had failed and the spacecraft was coming back to Earth; that moment passed with no signal. Now tension mounted as the clock ticked off the seconds to the time expected for a successful burn. If that time came and went with no word from Apollo 8, it would be a really bad day. Just on time, the telemetry signal locked up and Jim Lovell reported, “Go ahead, Houston, this is Apollo 8. Burn complete. Our orbit 160.9 by 60.5.” (Lovell was using NASA’s preferred measure of nautical miles; in proper units it was 311 by 112 km. The orbit would subsequently be circularised by another SPS burn to 112.7 by 114.7 km.) The Mission Control room erupted into an un-NASA-like pandemonium of cheering.

Apollo 8 would orbit the Moon ten times, spending twenty hours in a retrograde orbit with an inclination of 12 degrees to the lunar equator, which would allow it to perform high-resolution photography of candidate sites for early landing missions under lighting conditions similar to those expected at the time of landing. In addition, precision tracking of the spacecraft’s trajectory in lunar orbit would allow mapping of the Moon’s gravitational field, including the “mascons” which perturb the orbits of objects in low lunar orbits and would be important for longer duration Apollo orbital missions in the future.

During the mission, the crew were treated to amazing sights and, in particular, the dramatic difference between the near side, with its many flat “seas”, and the rugged highlands of the far side. Coming around the Moon they saw the spectacle of earthrise for the first time and, hastily grabbing a magazine of colour film and setting aside the planned photography schedule, Bill Anders snapped the photo of the Earth rising above the lunar horizon which became one of the most iconic photographs of the twentieth century. Here is a reconstruction of the moment that photo was taken.

On the ninth and next-to-last orbit, the crew conducted a second television transmission which was broadcast worldwide. It was Christmas Eve on much of the Earth, and, coming at the end of the chaotic, turbulent, and often tragic year of 1968, it was a magical event, remembered fondly by almost everybody who witnessed it and felt pride for what the human species had just accomplished.

You have probably heard this broadcast from the Moon, often with the audio overlaid on imagery of the Moon from later missions, with much higher resolution than was actually seen in that broadcast. Here, in three parts, is what people, including this scrivener, actually saw on their televisions that enchanted night. The famous reading from Genesis is in the third part. This description is eerily similar to that in Jules Verne’s 1870 Autour de la lune.

After the end of the broadcast, it was time to prepare for the next and absolutely crucial maneuver, also performed on the far side of the Moon: trans-Earth injection, or TEI. This would boost the spacecraft out of lunar orbit and send it back on a trajectory to Earth. This time the SPS engine had to work, and perfectly. If it failed to fire, the crew would be trapped in orbit around the Moon with no hope of rescue. If it cut off too soon or burned too long, or the spacecraft was pointed in the wrong direction when it fired, Apollo 8 would miss the Earth and orbit forever far from its home planet or come in too steep and burn up when it hit the atmosphere. Once again the tension rose to a high pitch in Mission Control as the clock counted down to the two fateful times: this time they’d hear from the spacecraft earlier if it was on its way home and later or not at all if things had gone tragically awry. Exactly when expected, the telemetry screens came to life and a second later Jim Lovell called, “Houston, Apollo 8. Please be informed there is a Santa Claus.”

Now it was just a matter of falling the 375,000 kilometres from the Moon, hitting the precise re-entry corridor in the Earth’s atmosphere, executing the intricate “double dip” re-entry trajectory, and splashing down near the aircraft carrier which would retrieve the Command Module and crew. Earlier unmanned tests gave confidence it would all work, but this was the first time men would be trying it.

There was some unexpected and embarrassing excitement on the way home. Mission Control had called up a new set of co-ordinates for the “barbecue roll” which the spacecraft executed to even out temperature. Lovell was asked to enter “verb 3723, noun 501” into the computer. But, weary and short on sleep, he fat-fingered the commands and entered “verb 37, noun 01”. This told the computer the spacecraft was back on the launch pad, pointing straight up, and it immediately slewed to what it thought was that orientation. Lovell quickly figured out what he’d done, “It was my goof”, but by this time he’d “lost the platform”: the stable reference the guidance system used to determine in which direction the spacecraft was pointing in space. He had to perform a manual alignment, taking sightings on a number of stars, to recover the correct orientation of the stable platform. This was completely unplanned but, as it happens, in doing so Lovell acquired experience that would prove valuable when he had to perform the same operation in much more dire circumstances on Apollo 13 after an explosion disabled the computer and guidance system in the Command Module. Here is the author of the book, Jeffrey Kluger, discussing Jim Lovell’s goof.

The re-entry went completely as planned, flown entirely under computer control, with the spacecraft splashing into the Pacific Ocean just 6 km from the aircraft carrier Yorktown. But because the splashdown occurred before dawn, it was decided to wait until the sky brightened to recover the crew and spacecraft. Forty-three minutes after splashdown, divers from the Yorktown arrived at the scene, and forty-five minutes after that the crew was back on the ship. Apollo 8 was over, a total success. This milestone in the space race had been won definitively by the U.S., and shortly thereafter the Soviets abandoned their Zond circumlunar project, judging it an anticlimax and admission of defeat to fly by the Moon after the Americans had already successfully orbited it.

This is the official NASA contemporary documentary about Apollo 8.

Here is an evening with the Apollo 8 astronauts recorded at the National Air and Space Museum on 2008-11-13 to commemorate the fortieth anniversary of the flight.

This is a reunion of the Apollo 8 astronauts on 2009-04-23.

As of this writing, all of the crew of Apollo 8 are alive, and, in a business where divorce was common, remain married to the women they wed as young military officers.

Kluger, Jeffrey. Apollo 8. New York: Picador, 2017. ISBN 978-1-250-18251-7.

9+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

Seven Minutes of Terror

NASA Mars InSight landingNASA’s Mars InSight lander is now approaching the Red Planet and will attempt to land later today.  Here is a timeline of events during the entry, descent, and landing (EDL) phase if everything goes as planned (adapted from the NASA/JPL “Landing Milestones” page).  All times are in Universal Time (UTC), which you can see in the title bar at the top of the Ratburger page.

  • 19:40 UTC – Separation from the cruise stage that carried the mission to Mars
  • 19:41 UTC – Turn to orient the spacecraft properly for atmospheric entry
  • 19:47 UTC – Atmospheric entry at about 19,800 kilometres per hour, beginning the entry, descent and landing phase
  • 19:49 a.m.UTC – Peak heating of the protective heat shield reaches about 1,500 °C
  • 15 seconds later – Peak deceleration, with the intense heating causing possible temporary dropouts in radio signals
  • 19:51 UTC – Parachute deployment
  • 15 seconds later – Separation from the heat shield
  • 10 seconds later – Deployment of the lander’s three legs
  • 19:52 UTC- Activation of the radar that will sense the distance to the ground
  • 19:53 UTC – First acquisition of the radar signal
  • 20 seconds later – Separation from the back shell and parachute
  • 0.5 second later – The retrorockets, or descent engines, begin firing
  • 2.5 seconds later – Start of the “gravity turn” to get the lander into the proper orientation for landing
  • 22 seconds later – InSight begins slowing to a constant velocity (from 27 km/h to a constant 8 km/h) for its soft landing
  • 19:54 UTC – Expected touchdown on the surface of Mars
  • 20:01 UTC- “Beep” from InSight’s X-band radio directly back to Earth, indicating InSight is alive and functioning on the surface of Mars
  • No earlier than 20:04 UTC, but possibly the next day – First image from InSight on the surface of Mars

Here is a description of the entry, descent, and landing phase.

You can watch live coverage of InSight’s arrival at Mars starting at 18:30 UTC on:

Here is the Landing Day – 1 press briefing.

Two CubeSats called MarCO-A and B are shadowing InSight’s path.  They are the first CubeSats launched on an interplanetary trajectory.  If successful, they will provide a real-time communications link between the lander and Earth.  They are not, however, required for a successful landing.  If they fail, information on the landing may be delayed until it can be relayed by another spacecraft orbiting Mars.  After doing their job, the MarCO CubeSats will fly by Mars and continue to orbit the Sun for billions of years, just like Elon Musk’s roadster.  Here is a video about the MarCO mission.

Here are more details about MarCO.

13+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

Soyuz MS-10 Launch Failure

At 08:40 UTC on 2018-10-11, Soyuz MS-10 launched toward the International Space Station with a crew of two on board: Commander Aleksey Ovchinin of the Russian Space Agency and Flight Engineer Nick Hague of NASA.

Shortly after the separation of the four first stage boosters, around two minutes into the flight, Russian mission control began to report “failure”.  The animation shown on NASA TV continued to show a nominal mission.  There were several additional reports of failure, including the time.

Shortly thereafter, Ovchinin reported a ballistic re-entry had been selected, and then that they were weightless.  Then, he reported G forces building to 6.5 (consistent with a steep ballistic re-entry), and then declining to something over two [I think 2.5 or 2.7, but I do not have a recording], which would indicate having passed through the peak of re-entry braking.

There have been no reports from the crew since then.  Russian mission control reports that recovery helicopters have been dispatched to the predicted landing zone, and are expected to take around 90 minutes to arrive.  The launch was on a northeast azimuth, so landing would be  expected to be in northern Russia.

After a long delay (presumably because the descent capsule had passed over the horizon from the tracking stations), rescue forces reported that they had contacted the crew by radio.  The crew reported that they had landed and were in good condition.

I will add updates in the comments as events unfold.

14+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar

This Week’s Book Review – Blue Collar Space

I write a weekly book review for the Daily News of Galveston County. (It is not the biggest daily newspaper in Texas, but it is the oldest.) My review normally appears Wednesdays. When it appears, I post the review here on the following Sunday.

Book Review

Everyday jobs turn wondrous in ‘Blue Collar Space’

By MARK LARDAS

July 18, 2018

“Blue Collar Space,” by Martin Shoemaker, Old Town Books, 2018, 244 pages, $11.99

What will it be like when humans are living and working in space? Ordinary folk, like those who live down your street?

“Blue Collar Space,” by Martin Shoemaker offers one vision. It is a collection of short science fiction stories set on the moon and Mars, and Jupiter orbit.

The settings are exotic. The jobs are ordinary. EMTs, sanitation workers, teachers, doctors, factory workers and miners feature in these stories. A few stories fall into the category of space adventure. “Not Close Enough” deals with a first manned mission to Mars — sort of a first manned mission to Mars. The explorers from NASA, ESA, Roscosmos, JAXA, and space agencies from India, Australia and China are not allowed closer to Mars’ surface than Martian orbit. There is a sort of spy adventure in the short story “Black Orbit,” with smugglers and secret agents.

Yet most deal with life and work of an everyday sort; dirty jobs in a space setting. A rescue team is sent to assist crash survivors in “Scramble.” A young girl must find help for her injured father — on the surface of the moon — in “Father-Daughter Outing.” The complexities of running a sanitation system on a lunar city gets explored in “The Night We Flushed the Old Town.” A children’s survival class instructor on Mars has to figure out how to fix things when something goes wrong in “Snack Break.” A moon prospector grapples with the discovery that starring in a moon-based kiddie show really is significant in “A Sense of Wonder.”

It is not dull. Shoemaker shows the adventure in doing things that on Earth are ordinary when they must be done in a hostile environment like space. Being on a spaceship, a space station, or surface of the moon and Mars changes things. He writes with a crisp and engaging style that draws readers into the tale. The result is fascinating reading.

“Blue Collar Space” captures what life will really be like when we finally get off Earth and move into space. It will be commonplace, yet at the same time it will be wonder filled.

 Mark Lardas, an engineer, freelance writer, amateur historian, and model-maker, lives in League City. His website is marklardas.com.

8+

Users who have liked this post:

  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar
  • avatar